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FORCE FREE MAGNETIC FIELDS
AND SOLAR ACTIVITY

I. INTRODUCTION

The key phenomenon of solar activity is the solar flare, and it
is generally agreed that the energy released in a solar flare is
derived from magnetic energy (Sweet, 1969). The structure of magnetic-
field configurations in the solar atmosphere is therefore essential {
for understanding solar activity in general and solar flares in f
particular. One meaningful way to approach the problem of flare
prediction is to develop methods for determining magnetic~field
configurations in active regions and to find procedures for predicting
the evolution of these configurations. Since the pressure of the
coronal plasma is less than the magnetic stress in active regions,

the magnetic field in solar active regions typically comprises one

of two configurations. One of these is the 'force-free' state
(Schmidt, 1963), and the other is the '"current sheet". It is widely
believed that the current sheet plays a key role in the flare process

since the "Petschek mechanism'" (Petschek, 1964 constitutes a rapid
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mode for the release of free magnetic energy. Our studies of solar

flares (Barnes and Sturrock, 1972) indicate that the transformation
i of a force-free configuration into a current-sheet configuration may S i

be a key step in the overall flare process. ms

More recent work by Spicer (1076) leads to a flare model in which | M.
| LR IDEL L

the free magnetic energy is the excess energy of a force-free field

el

configuration. In the Spicer model, rapid cnergy release becomes
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possible through a resistive-type instability, comparable with the l
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"tearing-mode instability'" (Furth, Killeen and Rosenbluth, 196%) which
leads to rapid energy release from current sheets.

For the above reasons, it is essential that one be able to
compute force-free magnetic-field structures if one is to make detailed
analysis of magnetic-field changes which lead to solar flares. This
is true either for a short-term goal or a long-term goal. The short-
term goal is simply that of developing magnetic-field models which
are simple enough for detailed study, but which bear some relation to
magnetic~field patterns likely to arise in the sun's atmosphere. The
long-term goal is that of computing magnetic-field structures in the
sun's atmosphere based on study of the observed magnetic-field con-
figuration of the photosphere and the photospheric velocity field.
The latter involves the calculation of force-free magnetic-field
configurations in three dimensions which is bevond the capability
of the computer now available to us. For this reason, we have limited
our scope to the studv of model force-free magnecic-field configurations

in two dimensions.
L% SPECIFIC GOALS

Our first goal was that of developing computational procedure
for the calculation of force-free magnetic-field configurations. The

relevant equation is

and
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so that equation (2.1) may be rewritten as
EX(VXB =0 . (2.3)
It follows from this euqation that

¥V XB = yB (2.4)

s
where y(x) is a scalar function of position. However, on operating on

both sides of this equation with the gradient operator and noting that
v, B=0 (2.5)
we find that

B . Tu-=

I
S

(2.6)

so that u is a constant along any field line. In general, however,
y will vary from one field line to the next.

If one considers the restricted class of force-free magnetic-field
configurations for which x = const., the governing equation (2.4) is a
linear equation. This is a great simplification in computing field
configurations and it is one which has been used extensively in the
investigation of force-free fields. However, there is no a priori
reason to expect that a real magnetic-field conf®guration occurring in
the sun's atmosphere will have u = constant. For instance, if we
consider the magnetic-field configuration produced by a localized
current distribution, we may expect that it will vary with distance

L asymptotically as a power law:

Bie L (2.7)
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This means that

(v X B) « el (2.8) .
2 so that .
E
el 17 (2.9)
k It can, in fact, be shown that a magnetic-field configuration constrained

to have x = constant over an infinite volume will have infinite energy
1 (Anzer, 1976).

The procedure which we have developed at Stanford for the study

TR

A of force-free magnetic-field configurations, without the restriction

4 = constant, is based on the representation
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i B =% X VB (2.10)

-,

which follows from equation (2.5). One readily verifies that

-

B.W=0, B.%W=0 (2.11)

so that both o and B are constant along any field line. Hence we see

also that

(vXB) . Va=20, (v xB) . =0 |, (2.12)

which may be rewritten as

4
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These may be expressed in diadic notation as follows
(B &~ = ‘5
(v8) o - VBVB:Wa - (Va.VB)VB + YavVB:VVR = O (2.15)
, 2 22 \
- (Va,7B)Va + YaVB:VVa + (Vo) VB - Vava:YVB = 0 . (2.16)

These equations are in fact suitable for numerical calculation by
the relaxation procedure. This is equivalent to determining whether,
for a given assumed field configuration, 3 X B vanishes at a particular
point and, if it does not, allowing the field line to adjust itself
to make 3 XxB=0 locally.

The principal aim of this research program has been to study models

of force-free magnetic-field configurations using the representation

(2.17) and the relaxation procedure for numerical computation.
IITI. RESULTS

In order to make the models sufficiently simple to calculate,
it is essential to introduce some kind of symmetry. It is possible
to develop field models using translational symmetry in terms of
a rectangular coordinate system, as was done some years ago (Sturrock
and Woodbury, 1967). However, such field patterns can never erupt to
form current sheets since an open field pattern based on a line dipole
has infinite energy per unit length. It is therefore essential to go
to a more realistic geometry such as cylindrical geometry or spherical
geometry.

When force-free field patterns of cylindrical symmetry were first
investigated (Barnes and Sturrock, 1972), we found that the total

energy in the magnetic field configuration increases progressively
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with angle of shear, and that, for shear angles above some critical
value (about m), the energy in the magnetic field exceeds the energy

of the corresponding open-field configuration. This then led to the
important possibility that a force-free magnetic-field configuration
might, if sufficiently stressed, become unstable against an "eruptive
instability" which develops the field pattern into an open configuration
involving a current sheet. This current sheet could then provide
further energy release by field-line reconnection (Petschek, 1264,
which is the probable mechanism for energy release in solar flares.

One of the main aims of this research program has been to further
investigate model force-free magnetic-field patterns, extending the ;
geometry to the more realistic spherical geometry. It was important
to determine whether the energy property just mentioned is common to

all force-free configurations or whether it applies only to some

special class of such configurations.

We faced a number of problems in pursuing this aim. One real
handicap was the limited capability of the Stanford computer which
made it necessary to work with a much coarser mesh than is desirable.
Another difficulty was that of obtaining convergence of the relaxation
procedure. It is essential to introduce a ''relaxation parameter' X

defined by

-/ ) y -/ (n) .
SUEL) g - a) BV 4 g e (3.1)
est.

()
where B " is the field pattern obtained by the n'th iteration and

4
(n)
Bé:t is the field pattern indicated by 'full" relaxation, adjusting

{ each mesh point in turn (or in blocks) to satisfy the equations (Z.15)
s
:
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and (2.16). As the field became progressively more stressed, it was

necessary to use a smaller and smaller value of \ to insure convergence.
Unfortunately, this means that the convergence became slower and slower.
Since there were no simple analytical medels, based on spherical
geometry, against which to test our code, a minor error persisted in
the code for some time.
An example of our calculation of force-free field configurations,
based on a spherical boundary, is shown in Figures 3.1 - 3.3, It
is assumed that the field pattern has cylindrical symmetry above the
axis of the spherical coordinate system and this leads to the repre-

sentation (2.10) for which o = a(r,8) and

B=ow-v(r,s) g {8520

Contours of constant & give the field lines themselves, since « is a
measure of magnetic flux enclosed in a circle with constant values of
r and 8. Contours of constant Yy give the shear angle of the field
line. In fact, it was convenient to use log r rather than r as the
radial variable. This leads to a mesh which is finer in the high-field
regions and coarser in the weak-field regions. It was assumed that &
and v are prescribed along the surface of the sphere.

An additional difficulty in our calculations concerned the choice
of outer boundary. (In principal, we would have wished that we could
dispense with an outer boundary and extend the field pattern to infinity.)
It was, however, convenient to introduce an outer boundary which was

perfectly conducting. Field lines can therefore not penetrate the

limits of the computational mesh. If the outer radius of the system
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could be chosen large enough, one could hope that the conducting boundary
would appear to the field to be lying at infinity. Then the exact form
of boundary conditions chosen for the outer spherical boundary would not
be important.

We found, however, that as the field shear was increased, a point
was reached at which the fields seemed to billow out rapidly (as a function
of rate of increase of shear, not time) and to press against the outer
boundary. This readily occurred even though the outer boundary was
placed as far out as 700 surface radii. In comparing the energy stored
in the fields, under various conditions of shear, with the energy stored
in a completely open field configuration (current free, except for a
current sheet region), it was observed that, as the shear #hs increased,
increasing the stored energy in the system, the lines billowed out before
the stored energy reached the equivalent open field energy. This implies
that there is a smooth transition between closed and open field config-
urations in the spherical model, with no build-up of excess stored energy
as shear increases. Figures 3.1 ~ 3.3 show some typical field config-
urations for surface shear angles of 2.6, m and 2n radi:ns, respectively.
The boundaries are at © = O and /2 and R/Rj = 1 and 180. The boundary
at R/Rq = 180 is taken to be open (approximated by allowing field lines
to pass through the boundary with the condition that they be straight
there). The equatorial boundary (® = m/2) is taken to be conducting,
as if a mirror image existed in the southern hemisphere. One can see
in Figure 3.1 ‘maximum shear = 2.6 radians) that the field lines bulge
outward to a fairly large radius, but do not seem to sense the presence

of the outer boundary the field configuration for this shear angle




is observed to be the same for both open and closed outer boundaries).
Figure 3.2 shows the fields for a shear of 1 radians. Here, the fields
extend beyond the boundary. Then, in Figure 3.3 (shear = 2m radians),
the fields extend outward even further. The total stored energy
increases only slowly with increasing shear, appearing to approach
asymptotically the open field value.

Similar calculations on systems which include the southern
hemisphere as well show only qualitative differences, mainly that the
fields extend downwards into the southern hemisphere. The outward
bulging characteristic remains the same however.

The important comparison, for our purposes, is shown in Figure 3.4
in which the energy of the magnetic field is plotted as a function of
shear angle v, (the maximum value of vy). One of the most important
results of our program was the discovery that, with spherical geometry,
the behavior is quite different from that which we previously found
with cylindrical geometry. Whereas, with cylindrical geometry, the
total energy rose above the value for the corresponding open-field
configuration, this was not the case for spherical geometry: as the
shear increased progressively, the magnetic-field energy increased
but approached the energy of the open-field configuration asympotically,
while in our earlier work with the cylindrical model, the field energy
continued increasing linearly past the open field energy.

We spent some time and energy with the aim of determining whether
this effect is real or whether it was due to some difference in
boundary conditiors, error in one of the programs, etc. In order to

heip resolve these questions, we decided to simulate the cylindrical
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model by means of the spherical code. This could be done by considering
a ring dipole very close to one of the poles of the sphere. This model
substantially reproduced the results of the earlier cylindrical calcu-
lations.

This test indicated that there are qualitative differences between
the cylindrical and spherical models. Figures 3.5 - 3.8 show results
from these runs. The Rmax and Zmax boundaries are conducting in
Figures 3.5 - 3.6; the shear angles are m and 27 respectively. In
Figure 3.5, the outermost field lines are '"flattened'" against the
boundaries, particularly the Rmax boundary., This effect is even more
pronounced in Figure 3.6, where the fields are strongly influenced by
the outer boundaries.

Figure 3.7 shows the shear 2m case with the two outer boundaries
opened up. The run associated with this figure was slow to converge,
requiring a small relaxation parameter for stability. It is possible
that further iteration would see the lines open up further, although
we feel the configuration shown is near the final value. Note that
the fields open outwards only about ten times the radius of the neutral
shear radius. This is in marked contrast to the spherical case, where
they extended out several hundred times the scale of the neutral shear
line radius. The energy stored in the fields fell somewhat when the
boundaries were opened (for the shear of Figure 3.7, it was greater than
the completely open field energy). We cannot say whether this is because
an appreciable amount of energy was carried across the boundaries when
the lines opened up, or because the more open state is simply a state of

significantly lower energy. Certainly, the energy versus shear curve
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with conducting boundaries increases almost linearly past the completely
open field value, in agreement with our earlier result (1972). Figure 3.8
shows the field configuration when the lines are completely open.

This simulation of the earlier cylindrical code with the spherical
model indicates that there is a physical difference between the two
results and that there are apparently two types of force-free field
configdrations:

Type 1. For a given magnetic flux distribution on the bounding surface,
as the shear increases, the stored energy increases but approaches, as

a limiting value, the energy of the corresponding open-field configurétion.
Type 2. For given magnetic flux distribution on the bounding surface,

the stored energy increases indefinitely as the amount of shear increases.
In particular, after a finite amount of shear, the stored energy exceeds
the energy of the corresponding open-field configuration.

Nevertheless, it must be emphasized that we have only a presumptive

case for this classification: it will be essential to investigate

a wider range of models and, even more important, to pin down the

precise effect of the outer boundary condition, before this classifi-
cation can be considered to be established. It remains at this time

a possibility that the apparent classification is an artifact of

subtle differences in boundary conditions used for different models.

The models of cylindrical topology which we have considered
belong to Type 2. The early models of spherical geometry, which we
have calculated as part of this program, belong to Type 1. However,
when we used the spherical geometry but compressed the field configu-
ration to a small region around one of the poles, the behavior corre-

sponded to that of Type 2.

11




T v g o~ 7=

IV. DISCUSSION

We have found that it is possible to compute force-free field
configurations without making the restrictive assumption (adopted in
most other work) that x = constant. However, the convergence can
become very slow if the magnetic field is highly stressed, and it is
clearly desirable to try to find some procedures to speed up convergence.
It also would be highly advantageous to pursue these calculations with
a more powerful computer.

The most important result of this program is the indication that

force-free magnetic-field configurations may be divided into two
types, defined at the end of Section III. The evolution of force-free
fields of Type 1 would probably not lead to a solar flare. As the
stress increases progressively, the field expands and approaches

asympotically the open state. Since this open configuration builds

L e

up slowly, it seems unlikely that major reconnection would occur. It |
seems more likely that the field topology would develop into a geometry
with a thick current sheet which is fairly stable, such as exists in a
coronal streamer. However, it is always possible that a certain
disturbance (such as a shock wave) might trigger an instability even

in such a current sheet.

i e

By contrast, force-free fields of Type 2 are highly important for

the flare problem. They indicate the following sequence of events in

|

|

i

E' an active region leading to a flare: a subphotospheric twisted flux

[ tube erupts to give a bipolar field configuration in an active region.
|

; é Since it is energetically favorable for the twist to propagate from
Y below the photosphere (where the field is strong) to above the photosphere

!. 17
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(where it is weaker), this will occur, leading to progressive twisting
of the force-free field configuration in the atmosphere above the
active region. When the field is sufficiently stressed, it contains
more energy than does the corresponding open-field configuration. It

is therefore either unstable or metastable. The fact that the

Ty

: relaxation calculation is stable (although only marginally so) indicates

W

A that such a field configuration is physically stable against small
perturbations. It must therefore be metastable, that is, unstable

: against finite perturbations. A finite perturbation would therefore
trigger an eruptive instability converting the closed force-free

1 configuration into the corresponding open-field configuration with a
current sheet. The magnetic-field reconnection can occur immediately
b in this current sheet leading to a solar flare,

k To sum up, it seems that the evolution of a force-free field of
Type 1 would probably not lead to a flare, whereas the evolution of

: force-free fields of Type 2 would almost certainly lead to a flare.

It is important to pursue the indication of the existence of two
types of force-free field. A wider range of models should be calculated,
on a more powerful computer, either removing the outer boundary to very
large distances, or finding a method which does not require an outer
W boundary. For instance, it might be possible to replace the radial
; variable by 1/r. However, in this case, it will be essential to study

asymptotic forms of force-free magnetic-field configurations to insure

that we can properly handle the behavior of the magnetic field in the

neighborhood of the singularity 1/r = 0.
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This program demonstrates that one can study the properties of
force-free magnetic fields without making the restrictive assumption
that x = constant., It also indicates the existence of an important
classification of force-free fields. If this classification is valid,
it will have an important bearing on flare theory and flare prediction.
For instance, one might be able to determine criteria which would enable
one to categorize the field produced by an active region as belonging
either to Type 1 or Type 2. This would then indicate whether the

flare region is or is not likely to produce a flare.
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Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.k4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.5.

FIGURE CAPTIONS

Field configuration for a spherical case with a conducting
equator. The neutral shear point occurs at about 65° N.
latitude. The radial coordinate is logarithmic and extends
to 180 surface radii. Maximum shear for this case is 2.6

radians.,
The same as Figure 3.1 with maximum shear m radians.
The same as Figure 3.2 with maximum shear 2m radians.

Curve of stored energy vs maximum shear angle for the case
of Figures 3.1 - 3.3, Shown also is the approximate value
of the stored energy of the completely open field config-

uration.

Field configuration for a case in which the computational
region is restricted to be near the pole, simulating the
earlier cylindrical model. The system is nearly 'square"
(that is a cylinder with radius equal to length) with the
neutral shear point occurring at about 1/7 of the outer

radius. Maximum shear for this case is m radians.
The same as Figure 3.5 with maximum shear 2+ radians.

The same as Figure 3.6 with the Z and R boundaries
max max

opened to allow field penetration.

The same configuration as Figure 3.5 with completely open
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field lines. Here the pattern is current free except along

the contour beginning at the neutral shear point, where a ;

current sheet exists.
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